The Crystal Structure of Nicotinic Acid

BY W. B. WRIGHT AND G. S. D. KING

The Lyons Laboratories, Hammersmith Road, London W. 14, England

(Received 15 August 1952 and in revised form 12 November 1952)

The crystal structure of nicotinic acid has been determined by two- and three-dimensional X-ray methods. The bond lengths, which have a probable error of 0.014 Å, are: pyridine ring C-C = 1.38 Å, C-N = 1.34 Å, carboxyl group $C_2-C_6 = 1.48$ Å, $C_6-O_1 = 1.34$ Å, $C_6-O_2 = 1.18$ Å. The molecules are linked in chains parallel to the *b* axis by hydrogen bonds of length 2.66 Å between O_1 and the nitrogen atom of the next molecule.

Introduction

Nicotinic acid is 3-pyridine carboxylic acid. Its optical properties, unit cell and space group have been described in a previous communication (Wright & King, 1950). This paper is concerned with the determination, by three-dimensional X-ray methods, of the bond lengths in the molecule and of the nature of the intermolecular linkages.

Experimental

The cell dimensions reported in the previous paper are

$$a = 7 \cdot 175 \pm 0.002, \ b = 11 \cdot 682 \pm 0.002, \ c = 7 \cdot 220 \pm 0.002$$
 Å,
 $\beta = 113^{\circ} 23' \pm 3'$.

Space group $P2_1/c$.

Multiple-film equi-inclination Weissenberg photographs were taken about the $a(h = 0 \rightarrow 3)$, $b(k = 0 \rightarrow 5)$, $c(l = 0 \rightarrow 3)$ and [101] $(l = \bar{h} \rightarrow 3 - h)$ axes using copper radiation. All but 12 of the 1256 reflexions within the limiting sphere for copper $K\alpha$ radiation could be recorded in this way, but 305 reflexions were too weak to be observed. Intensities were estimated visually by comparison with standard spots. A correction for variation in spot shape was made by the method given by Broomhead (1948) to allow for the non-uniform cross-section of the crystals. As the largest dimension of any of the crystals used was less than 0.5 mm. no correction was made for absorption. Lorentz and polarization corrections were made by the method of Goldschmidt & Pitt (1948). It was reported in the preliminary paper that all crystals of nicotinic acid are twinned across (100). The observed hk0 intensities, which are the sums of the contributions from each twin, were corrected by means of a twinning ratio obtained from the *b*-axis photographs.

A few of the strongest reflexions were found during the course of the analysis to have calculated structure factors much greater than the observed values. This may be due to extinction for which no allowance was made, or to the fact that these strong reflexions could only be correlated with very weak spots on the final films of the multiple-film series. For the final correlation of these strong reflexions a larger number of film-to-film ratios was used than was needed for the other reflexions so that the initial errors may have been much increased.

Determination of the structure

The c-axis projection

The optical properties showed that the crystals are negatively birefringent and indicated that the pyridine

Fig. 1. The c-axis Patterson projection.

ring makes an angle of about 76° with the *c* axis. The *c*-axis projection was therefore expected to give the best picture of the structure in spite of the overlap inherent in the space group $P2_1/c$.

A c-axis Patterson projection (Fig. 1) was computed. It has been shown (Patterson, 1949) that a Patterson synthesis may be used for locating centrosymmetrical groups such as benzene rings. In nicotinic acid, therefore, two pyridine rings which occur in a centrosymmetric relation should give rise to a heavy peak in the Patterson projection at a point corresponding to the distance between their centres. If it is assumed that the coordinates of the centre of the pyridine ring of one molecule are (x, y) in the *c*-axis projection, there should be a single weight peak in the Patterson projection at (2x, 2y) with related peaks of double weight at $(2x, \frac{1}{2})$ and at $(0, \frac{1}{2}-2y)$.

The only peak at $y = \frac{1}{2}$ is I in Fig. l and is situated at $(\frac{1}{3}, \frac{1}{2})$. II, IV, V and VI have approximately the same x coordinate as I, but VI is so heavy that only a portion of it could be attributed to vectors between centres of pyridine rings. The third related peaks of the triplets are III corresponding to VI and a possible

Fig. 2. (a) Diagrammatic representation of the nicotinic acid molecule. (b) Vector map of molecule in Fig. 2(a).

peak at VII, which would be obscured by the origin peak, corresponding to II. There are no peaks of suitable height corresponding to IV and V which cannot, therefore, be due to inter-ring vectors.

Fig. 2(a) is a simplified drawing of the molecule in which all the atoms (numbered 1-9) have been given the same weight, all bond lengths are equal and all bond angles are 120° . Fig. 2(b) is the corresponding vector diagram in which only those points at which two or more vectors coincide are marked. Peak A is made up of vectors 3-8, 2-5 and 1-9 in Fig. 2(a).

Fig. 4. The two possible molecular orientations compatible with atomic positions from the *b*-axis projection.

These three vectors will coincide only if the carboxyl group is coplanar with the ring. Peak B is due to vectors 4-8, 5-7 and 6-9. As peaks V and VI occur in the Patterson projection in positions corresponding to A and B, the molecule is probably planar. Peaks III and IV in the Patterson projection correspond to vectors of the type 2-4. As peak III is smaller than peak I, and yet must consist partly of vectors of the type 2-4, it is unlikely to be one of the intermolecular peaks so that peaks I, II and VII are the triplet due to vectors between ring centres.

The centre of the ring was therefore placed at $(\frac{1}{6}, \frac{1}{5})$, corresponding to peak II on the vector map $(\frac{1}{3}, \frac{2}{5})$, the carboxyl group was made coplanar with the ring, and the molecular orientation was fixed by rotating the molecule until A and B in Fig. 2(b) corresponded with peaks V and VI in the Patterson projection. Of the four different orientations of the

Fig. 3. The c-axis Fourier projection. Contours at intervals of $1 e A^{-2}$ starting at $2 e A^{-2}$ (broken line).

Fig. 5. The *a*-axis Fourier projection. Contours at intervals of $2 e A^{-2}$; $2 e A^{-2}$ line broken.

molecule which satisfy these conditions, three were eliminated on packing considerations.

The fourth orientation was used as a trial structure for the calculation of hk0 structure factors using the unitary atomic scattering factors given by Robertson (1935).

The x and y coordinates were refined by a series of nine Fourier projections. The structure factor disagreement $R = \Sigma ||F_o| - |F_c|| \div \Sigma F_o$ was 28.5% at this stage. This high value indicates that refinement was incomplete. It was not possible to reduce the disagreement further by Fourier methods because of the overlap in projection. Fig. 3 shows a c-axis Fourier projection based on the final atomic coordinates obtained from the three-dimensional analysis.

The a- and b-axis projections

As the orientation of the molecular plane was known from the optical data, it was decided to use the *b*-axis projection to determine the *z* coordinates. A projection of the molecule was drawn in the unit cell so that hydrogen bonds of length 2.8 Å could be formed between carboxyl groups related by a centre of symmetry. One of the four possible positions gave much better agreement than the others between observed and calculated structure factors. This was refined by two Fourier projections, followed by two applications of the method of steepest descents, as modified by Qurashi (1949), which reduced R_{hol} to 31%. Further attempts at refinement did not improve the agreement.

The 0kl structure factors were calculated using y coordinates from the *c*-axis projection and z coordinates from the *b*-axis projection. The high disagreement of 62% was due to the incorrect bonding of the atoms in the *b*-axis projection. This is shown in Fig. 4 in which the nine atoms are bonded in two different ways to give two different orientations of the molecule.

In one case the carboxyl group is attached to the side of the ring with the higher z coordinates in order to permit hydrogen-bond formation between carboxyl groups related by the centre of symmetry at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. In the other case the carboxyl group is attached to the side of the ring with lower z coordinates so that hydrogen bonds can be formed between this group and the nitrogen atom of the molecule related to the first by the operation of the screw axis $(\frac{1}{2}, y, \frac{1}{4})$. As all the atoms have approximately the same scattering power, it is impossible to distinguish between the two orientations in the *b*-axis projection. In the course of the *a*-axis and three-dimensional refinements the molecule moved from the position postulated for the first case to that compatible with the hydrogen bonds between oxygen and nitrogen.

Two Fourier refinements of the *a*-axis projection reduced R_{0kl} to 40%. It was not possible to proceed further owing to lack of resolution. Figs. 5 and 6 show

Fig. 6. The b-axis Fourier projection. Contours at intervals of 2 e.Å⁻²; 2 e.Å⁻² line broken.

a- and *b*-axis Fourier projections based on the final atomic coordinates.

Three-dimensional refinement

The final atomic coordinates from the a- and c-axis projections, which are shown in column 0 of Table 1, were used to calculate *hkl* structure factors. As the

Table	1.	Atomic	parameters	obtained	from i	hree-d	imensi	onal	F	'ourie	r synt	heses
-------	----	--------	------------	----------	--------	--------	--------	------	---	--------	--------	-------

Ato	m	0	1	2	3	4	5*
<u>C.</u>	x	0.356		0.3500	0.3466	0.3462	0.3459
-1	ų	0.508		0.2064	0.2068	0.2085	0.2091
	z	0.210	0.215	0.2200	0.2161	0·218 4	0.2171
C.	x	0.253		0.2564	0.2570	0.2558	0.2585
- 6	y	0.319		0.3168	0.3161	0.3152	0.3163
	z	0.187	0.183	0.1879	0.1900	0.1900	0.1906
C.	x	0.049		0.0519	0.0526	0.0231	0.0519
- 0	v	0.325		0.3227	0.3226	0.3221	0.3228
	z	0.171	0.123	0.1471	0.1454	0.1454	0.1454
C,	\boldsymbol{x}	0.932		0.9409	0.9423	0.9423	0.9441
	ų	0.219		0.2187	0.2218	0.2223	0.2232
	z	0.165	0.139	0.1353	0.1320	0.1306	0.1312
C-	x	0.042	. <u> </u>	0.0452	0.0455	0.0475	0.0446
	v	0.114		0.1177	0.1192	0.1196	0.1192
	z	0.128	0.157	0.1590	0.1597	0.1617	0.1607
C.	x	0.385		0.3807	0.3776	0.3758	0.3722
~6	11	0.423		0.4240	0.4257	0.4261	0.4246
	z	0.234	0.226	0.2137	0.2113	0.2107	0.2096
N	x	0.239		0.2415	0.2435	0.2436	0.2444
	บ	0.109		0.1123	0.1127	0.1126	0.1116
	z	0.178	0.190	0.1997	0.2029	0.2051	0.2048
0.	x	0.563		0.5622	0.5659	0.5653	0.5677
°1	21	0.409		0.4097	0.4101	0.4102	0.4100
	z	0.256	0.252	0.2442	0.2418	0.2404	0.2416
0.	x	0.296		0.2980	0.3002	0.2993	0.2991
- <u>2</u>	\tilde{v}	0.524		0.5174	0.5155	0.5160	0.5167
	y z	0.205	0.203	0.1948	0.1945	0.1939	0.1956

* Corrected for series-termination errors.

errors in the x and y coordinates were considered to be small compared with the errors in z, owing to lack of resolution in the a- and b-axis projections, it was decided that the z coordinates should first be obtained more accurately by means of line syntheses parallel to the c axis as nearly as possible through the atomic centres.

The amount of computation was reduced by grouping the atoms in pairs having approximately the same y coordinate (C₅ and N 7/60, C₁ and C₄ 13/60, C₂ and C₃ 19/60, C₆ and O₁ 25/60 and O₂ 31/60). The syntheses were computed at intervals of 1/60 of the cell sides, using Robertson's strip-and-stencil method (Robertson, 1948). The new z coordinates are shown in column 1 of Table 1. It can be seen from these values that the atoms may conveniently be divided into three groups such that only three plane sections parallel to (001) are necessary for the centre of each atom to be within c/60 of one or other of these sections. Using structure factors with recalculated signs, plane sections were computed at z = 9/60 for C₃, C₄ and C₅, at z = 12/60 for C_1 , C_2 , C_6 , N and O_2 and at z = 15/60for O₁, together with line sections as before. Atomic coordinates were calculated from the peak positions in the line sections and plane sections, using the method of Parry & Pitt (1949), and are given in column 2 of Table 1.

Two more sets of plane sections at z = 17/120, 24/120 and 29/120, and line sections as before, were computed at intervals of 1/120 of the cell sides. The coordinates obtained are given in columns 3 and 4 of Table 1. The last Fourier synthesis did not cause any changes of sign in the calculated structure factors. Values of the structure factors to the nearest 0.2 were multiplied by 5 for these syntheses in order to minimise rounding-off errors. All computed sections were within 0.15 Å of atomic centres.

It was observed during the three-dimensional structure-factor calculations that $\Sigma F_c / \Sigma F_o$ for each *c*-axis layer line increased with *l*. This indicated that thermal vibration is greater in the direction perpendicular to the molecular plane than in other directions. A temperature factor of the form $\exp[-(B\sin^2\theta + Cl^2)]$ was determined from the structure factors calculated after the fourth Fourier synthesis by the method of least squares. The values obtained were: B=-0.404, C=0.0124.

The atomic coordinates from the fourth Fourier synthesis were corrected for series termination errors by the F_{c} -synthesis method (Booth, 1946). Final

;

atomic coordinates are given in column 5 of Table 1. Fig. 7 is a composite electron-density map of the molecule prepared from the last set of plane sections. Table 5 shows the observed structure factors and those

Fig. 7. Electron density map of nicotinic acid. Contours at intervals of $1 \text{ e.} \text{Å}^{-3}$.

calculated using the values of the atomic parameters given in column 5 of Table 1.

The structure-factor disagreements for the final coordinates are $R_{hkl} = 21.9\%$, $R_{hk0} = 20.8\%$, $R_{h0l} = 18.7\%$ and $R_{0kl} = 22.6\%$, including those terms too weak to be observed which were assigned half the minimum observable value of $|F_o|$.

Accuracy of the determination

The standard deviation $\sigma(x)$ etc. of atomic coordinates were estimated from the differences ΔF between the magnitudes of observed and calculated values of the structure factors (Cruickshank, 1949). It can be shown that

$$\sigma\left(\frac{\partial\varrho}{\partial x_j}\right) = \frac{2\pi}{a_j V} \left\{\sum_{h}\sum_{k}\sum_{l}h_j^2 \Delta F^2\right\}^{\frac{1}{2}}.$$

In a monoclinic cell

$$egin{aligned} \sigma(x) &= rac{\{\sigma^2(\partial arrho_l/\partial x) - \sigma^2(\partial arrho_l/\partial z)\cos^2eta\}^{rac{1}{2}}}{(\partial^2arrho_l/\partial x^2)\sin^2eta} \ , \ & \sigma(y) &= rac{\sigma(\partial arrho_l/\partial y)}{\partial^2arrho_l/\partial y^2} \ , \ & \sigma(z) &= rac{\{\sigma^2(\partial arrho_l/\partial z) - \sigma^2(\partial arrho_l/\partial x)\cos^2eta\}^{rac{1}{2}}}{(\partial^2arrho_l/\partial z^2)\sin^2eta} \ . \end{aligned}$$

The values of $\partial^2 \varrho / \partial x^2$ etc. were obtained from the values of electron density in the neighbourhood of the final Fourier peaks. Mean values for all atoms are

$$\partial^2 \varrho / \partial x^2 = 71, \ \partial^2 \varrho / \partial y^2 = 86, \ \partial^2 \varrho / \partial z^2 = 65 \ \mathrm{e.\AA^{-5}}$$
.

The standard deviations of atomic position are $\sigma(x) = 0.0158$, $\sigma(y) = 0.0117$ and $\sigma(z) = 0.0168$ Å. The standard deviations in the bond lengths were calculated by compounding the above values in the bond directions and multiplying by 1/2. They are 0.022 Å for C₂-C₃, C₅-N and C₆-O₁, and 0.018 Å for

all other bonds. The corresponding probable errors in bond lengths are 0.015 Å and 0.012 Å. The probable error in the bond angles is 1.1° .

Description of the structure

Bond lengths and other interatomic distances are given in Table 2 and bond angles in Table 3. The molecule

Table 2. Interatomic distances

Intramoleller	ecular bond ngths	Intermolecular distances				
N–C,	1.336 Å	$O_1 - N'$	2·664 Å			
$C_1 - C_2$	1.379	$O_2 - N'$	$3 \cdot 256$			
C ₉ -C ₉	1.388	$O_2 - C_1'$	3.265			
$C_3 - C_4$	1.378	$O_1 - C_1^{\dagger}$	3.540			
$C_4 - C_5$	1.385	$O_1'' - z \hat{O}_2$	3.742			
$C_5 - N$	1.343	$O_1 - x C_4$	3.795			
$C_2 - C_6$	1.482	$O_1'' - O_2$	3.883			
$C_6 - O_1$	1.338					
$C_{e} - O_{2}$	1.184					

Table 3. Bond angles

$C_5 - N - C_1$	117·5°	$C_3 - C_2 - C_6$	118·2°
$N - C_1 - C_2$	124.0	$C_2 - C_6 - O_1$	114.1
$C_1 - C_2 - C_3$	117.8	$C_{2} - C_{6} - O_{2}$	124.0
$C_2 - C_3 - C_4$	119-1	$O_1 - C_6 - O_2$	121.9
$C_3 - C_4 - C_5$	119.2	$C_{6} - O_{1} - N^{7}$	110.4
$C_4 - C_5 - N$	$122 \cdot 4$	$\dot{O_1} - \dot{N'} - C_1'$	120.9
$C_1 - C_2 - C_6$	124.0	$\dot{O_{1}} - N' - C_{5}'$	121.6
V		• • • • • • • • • • • • • • • • • • •	

M (Fig. 8) is related to M' by the screw axis $(\frac{1}{2}, y, \frac{1}{4})$, to M'' by the symmetry centre $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, to M''' by the glide plane $(x, \frac{1}{4}, z)$ and to $_{x}M, _{z}M$ by unit translations in the x and z directions.

The pyridine ring is planar and its equation, determined by the method of least squares, is

-1.3181x + 0.5165y + 6.1912z = 1.

The plane makes angles of 12° , 3° and 78° with the a, b and c axes respectively. The displacements of the atoms from this plane are given in Table 4.

Table 4. Displacements of the atoms from the ring plane

Atom Displacement (Å)

	r
C,	-0.004
C ₂	0.003
$\overline{C_3}$	-0.005
C₄	0.001
C ₅	-0.003
Ň	0.004
C	0.030
0,	-0.046
$\tilde{O_2}$	0.095
_	

Discussion

The molecule

The bond lengths in the ring do not differ significantly from the values of 1.39 Å for C–C and 1.37 ± 0.03 Å for C–N found in an electron-diffraction study of pyridine by Schomaker & Pauling (1939). Fig. 9 com-

Table 5. Values of observed and calculated structure factors $(\times 10)$

			uco oj 0000100u	and calcul				
5 b.t	1771	77	hh1	IF.	F.	h1-1	HT	F.
161.0	14.01	1.0	10.00	1- 01	- C		1- 01	- C
000	—	2560	4,12,0	20		691	35	26
020	40	67	4.13.0	18	-13	6.10.1	74	59
040	1'99	-139	-//-			<u></u> <u> </u>	~ 9	- 3
040	1:23	- 152	500	- 0	10	0,11,1		0
060	81	-67	500	< 9	-13			
080	18	-23	510	< 9	-15	511	119	131
0.10.0	200	198	520	< 9	- 4	$\bar{5}21$	70	51
0,10,0	200	19	520	27	45	591	89	02
0,12,0	20	13	550	07			150	175
0,14,0	30	-22	540	87	109	541	150	175
			550	123	163	551	191	-259
100	10	0	560	95	-101	561	57	- 33
100	13	8	570	45	95		79	57
110	249	416	570	40	- 30	<u><u> </u></u>	10	57
120	258	-331	580	31	-27	581	27	-11
190	45	49	590	37	-42	591	74	55
130	40	- 43	5 10 0	<u> </u>	_ 4	5 10 1	39	24
140	29	-17	5,10,0	21	- ±	5,10,1	20	95
150	182	149	5,11,0	31	34	5,11,1	30	20
160	138	131	5,12,0	13	13	5,12,1	27	19
170	14	-0-						
170	44	20	600	89	108	<u> </u>	154	-149
180	74	68	610	60	74	701	115	110
190	132	129	610	00	- 74	421	115	-110
1.10.0	63	-46	620	< 9	12	431	41	-27
1 11 0	19		630	96	-122	441	119	-134
1,11,0	10	- 10	640	70	82	451	107	-122
1,12,0	59	- 55	650	~ °	0	161	79	63
1,13,0	46	33	030		0	401	14	10
1.14.0	52		660	31	29	<u> 471</u>	29	19
1 15 0	53	74	670	< 9	- 3	481	53	59
1,10,0	00		680	< 9	3	491	< 13	19
			600	200	10	7 10 1	20	6
200	< 6	-46	090	20	10	4,10,1	20	0
210	66	65	6,10,0	37	34	4,11,1	99	-88
210	100	107				4,12,1	31	18
220	120	-127	700	29	-29	<u> </u>	37	40
230	213	-201	710	21	94	1,20,2	•••	
240	108	-92	710	51	44		70	
250	07	119	720	59	81	311	78	55
200	140	105	730	27	27	321	86	-86
260	148	-125	740	9	4	331	25	6
270	15	3	750	40	36	241	40	46
280	55	-18	750	40	30	341	40	40
200	62	_ 53	760	13	19	351	38	11
230	02		770	< 6	- 7	361	103	-97
2,10,0	40	- 39	780	18	23	371	31	6
2,11,0	36	-26		20	20	501	20	19
2.12.0	22	16				381	29	40
9 19 0	06	<u>0</u> 1	800	30	-41	391	61	47
2,13,0	30	- 51	810	< 6	11	$\overline{3},10,1$	100	-124
2,14,0	30	19	820	< 6	- 3	ไ จี่ บ บ	35	17
			020	Õ	0	5,11,1	90	16
900	909	909	830	9	- 9	3,12,1	29	-10
300	293	393	840	20	-34	3,13,1	25	-16
310	124	123	850	22	43	3.14.1	40	-38
320	< 6	- 38						
330	51	3	511	90	1 4	511	04	190
940	01	07	811	20	10	211	94	199
340	91	81	821	< 13	-14	221	129	131
350	< 9	7	831	31	25	$\overline{2}31$	214	225
360	64	47	841	23	11	241	292	248
370	110	-111		64	74	5-1	05	49
900	~ 0	19	801	04	- 74	201	20	-42
300		-12	861	30	35	261	108	- 99
390	04	65				271	138	106
3,10,0	40	48	711	25	-18	281	42	- 9
3.11.0	20	19	791	50	47	501	/ 13	11
3 12 0	20	10	721	00	41	291	< 15 07	11 0
0,12,0	22	-15	731	31	27	2,10,1	25	- 3
3,13,0	23	15	741	15	-12	2,11,1	33	-23
3,14,0	23	26	751	41	- 28	2121	73	58
			1 =	. 10			10	
			761	< 18	-17	2,13,1	18	7
400	107	105	771	30	-30	2.14.1	47	30
410	115	- 126	781	79	74	1 1- 1-		
400	110	- 120	701	F0		111	- C	14
420	30	- <u>ZZ</u>	191	90	- 99		< 0	- 14
430	89	-105	_			<u>1</u> 21	237	-265
440	59	-64	611	< 20	7	131	145	-153
450	99	98	621	74	-50	141	178	-172
160	70	00	2 21	95 95	17	1 151	904	_ 205
400	19	00	001	20	11	101	474	303
470	45	32	<u>641</u>	50	56	161	80	65
480	62	62	651	72	61	171	86	-64
490	97	103	661	110	-112	1 181	160	155
1 10 0	20	200	Ē 71	<u>49</u>	 80		167	182
1,10,0	04	30		04	30	7 10 1	101	100
4,11,0	13	15	i 681	23	1	j 1,10,1	74	45

			\mathbf{T}	able 5 (cont	.)			•
hkl	$ F_o $	F_{c}	hkl	$ F_o $	F_{c}	hkl	$ F_o $	F_{c}
1,11,1	97	-85	471	25	-21	$\overline{6}82$	32	-20
$\bar{1},12,1$	76	42	481	< 20	17	692	< 18	11
1,13,1	48	-30	491	29	24	$\frac{6}{10,2}$	44	32
1,14,1	38	-23	4,10,1	64 66	-57	6,11,2	18	- 6
011	42	-56	4,11,1	< 13		502	64	64
021	51	57	-//-	<		512	< 13	4
031	63	-63	511	67	-70	$\overline{5}22$	< 13	14
041	85	61	521	57	42	532	48	-49
061	94 18	-91	541	55 20	-51	542	32 67	32
071	51	-32	551	166	241	$\frac{552}{562}$	142	170
081	25	15	561	85	104	$\overline{572}$	18	-15
091	104	108	571	< 20	- 5	582	40	31
0,10,1	275	-299	581	27	- 6 20	592	66 95	-68
0.12.1	83 23	- 70	5 10 1	20 31	39 9	5,10,2	23 44	19
0,13,1	18	- 6	5,11,1	< 11	- 8	5,12,2	< 6	-12
0,14,1	51	30						
0,15,1	< 4	- 2	611	< 20	-15	$\overline{4}02$	91	107
111	199	160	621	45	-25	$\frac{412}{700}$	185	- 200
121	212	-237	641	41 29	-41 24	422		- 55
131	168	171	651	20	-17	432 442	< 11	- 9
141	296	-299	661	35	-20	$\overline{\overline{4}52}$	92	109
151	202	187	671	72	-80	$\overline{4}62$	22	21
161	162	144	681	< 15	6	$\frac{472}{100}$	74	67
181	37 141	15	091	07	-71	482 702	20 80	60
191	58	-33	711	20	-10	4 .10.2	< 13	13
1,10,1	51	-56	721	39	34	4,11,2	22	-17
1,11,1	20	9	731	20	23	<u>4</u> ,12,2	27	27
1,12,1	20 65	8	741	43	- 38	4,13,2	18	-12
1.14.1	35	-24	751	< 15 15	- 2	302	241	-322
-,,-		-1	771	32	34	312	59	-75
211	< 9	-25				$\overline{3}22$	25	20
221	154	127	811	13	20	$\overline{\underline{3}32}$	114	110
231 941	140	158, 66	009	30	20	$\frac{342}{252}$	163	174
251	119	118	$\frac{502}{912}$	< 9		$\frac{352}{362}$	46	-21
261	39	45	922	18	-17	372	74	-57
271	110	-104		. 10		382	29	-15
281	32 65	-11	802	< 18	28	$\frac{392}{2}$	22	16
2.10.1	33	23	812	43	43	$\frac{3,10,2}{3,11,2}$	22	- 00
2,11,1	22	-20^{-20}	832	41	34	$\frac{3}{3},12,2$	31	24
2,12,1	67	62	842	< 13	6	$\overline{3}, 13, 2$	66	60
2,13,1	18	7	852	20	19	3,14,2	27	-32
2,14,1	09	64	802	33 20	30 	202	32	66
311	105	-98	0.2	-0		$\frac{1}{\overline{2}12}$	61	-58
321	< 13	-15	702	32	- 9	$\overline{2}22$	27	- 4
331	63	-74	712	83	87	232	127	-103
341 351	< 13	13	722	39 41	30	242	70	- 74
361	31	-47 - 4	$\frac{732}{742}$	$< 15^{41}$	-10^{42}	$\frac{252}{262}$	154	144
371	42	-47	$\overline{752}$	35	27	$\overline{2}72$	22	23
381	< 20	19	$\overline{7}62$	< 18	26	$\overline{2}82$	56	27
391	$< 20 \\ 77$	28	772	< 15	3		97	- 88
3,10,1	95	92 81	782	< 15 20	4 8	$\frac{2,10,2}{2,11,2}$	32 45	-34
3,12,1	42	-30	102	20	0	$\frac{2,11,2}{\overline{2},12,2}$	27	-22
3,13,1	25	7	<u>6</u> 02	82	107	2,13,2	83	-72
	100	1.4-	<u>612</u>	< 20	- 3	2,14,2	73	-65
411 491	129	151	622 <u> <u> </u> </u>	27 66	12	109	445	634
431	37	-03 37	642	126	-188	$\frac{102}{112}$	371	-499
441	155	-228	652	56	- 52	$\overline{\overline{1}22}$	148	161
451	31	-21	662	43	44	$\overline{132}$	51	60
461	108	128	672	< 20	7	142	53	-37

.

			Ta	able 5 (cont	.)			
hkl	$ F_o $	Fc	hkl	$ F_o $	Fc	hkl	$ F_o $	F_{c}
$\overline{1}52$	126	124	3,12,2	< 15	4	<u>6</u> 43	< 13	- 8
$\overline{\underline{1}}62$	49	-37	3,13,2	20	- 8	653	139	-146
172	44	26	409	04	197	663	112	119
182	65	- 62	402	94 20	- 127	683	< 13	19
ī.10.2	125	110	422	23	-43	693	30	$-13 \\ 22$
$\bar{1}, 11, 2$	64	-49	432	39	32	6,10,3	41	-30
<u>1</u> ,12,2	55	44	442	74	75	6,11,3	9	- 9
<u>1</u> ,13,2	29	26	452	36	41		100	
1,14,2	9	5	462	108	-114	513	122	139
			412	40 56	- 32	523 523	20	- 74
002	515	- 822	492	50 75	-69	543	173	-225
012	101		4,10,2	48	-43	$\overline{5}53$	59	52
032	23	- 4	4,11,2	33	-29	$\overline{5}63$	111	121
042	99	104	4,12,2	< 9	- 1	573	32	-24
052	73	76	509	69	51	583	29	29
062	78	74	502	~ 20	- 3	5 10 3	32	-40 -28
072	04 29	47	522	20	- 2	5,10,0 5.11.3	37	-39
082	101	94	532	45	-43	$\overline{5}, 12, 3$	13	-18
0.10.2	144	-136	542	97	138	_		
0,11,2	29	-22	552	82	-83	413	64	56
0,12,2	22	-20	562	22	10	$\frac{423}{100}$	74	64
0,13,2	< 13	12	572	29	9 17	433	20 20	00 90
0,14,2	< 9	7	592	29 45	27	440	65	29 59
			5.10.2	35	-16	463	30	-18
102	56 15	108	- / / -			473	27	30
112	15 36	10	602	33	27	4 83	35	-37
132	20	41	612	78	92	493	< 13	-29
142	59	36	622	$< \frac{18}{50}$	16	4,10,3	79	-71
152	41	-13	642	08 19	10	4,11,3	18	75 18
162	158	-159	652	15	11	4.13.3	< 9	-10 - 1
172	42	-26	662	33	-17	-12010		-
182	49	-40	672	15	- 8	313	20	9
192	31	- 108	682	22	21	323	71	62
1,11,2	20	-20				333	97	122
1,12,2	42	34	702	< 13	- 8	343	25	- 5
1,13,2	58	-47	712	20 37	20 	303	72	
1,14,2	65	56	732	35	-38	373	77	83
			742	22	2	383	< 13	- 4
202	145	186	752	9	7	_ 393	57	-60
212	97	-107	510			$\frac{3}{2},10,3$	51	40
232	96	97	913	20	-15	$\frac{3,11,3}{2,10,9}$	< 13	19
242	136	169	923 <u>0</u> 33	< 13	3	ə,12,ə ই 13 3	30 13	6
252	60	-56	000		Ū	0,10,0	10	
262	59	45	813	< 18	- 3	213	72	-94
272	47	-32	823	41	28	223	103	
282	- 30 - 20	9	833	31	-28	233	86	-96
2.10.2	48	39	843	42	-31	243	180	-204
2,11,2	27	5	863	- 15	- 1	200	126	103
2,12,2	37	-27	873	37	-37	273	62	-51
2,13,2	69	51	}			$\overline{2}83$	86	90
			713	41	34	293	22	- 3
302	91	-97	$\overline{7}23$	69	-54	$\bar{2},10,3$	32	-29
312	156		733	36	31	$\overline{2}, 11, 3$	23	23
322	27	-20	743	< 15	0	$\frac{2}{2}, 12, 3$	$< \frac{13}{22}$	1
332	58	-37	753	< 22	3	2,13,3	22	-22
34Z 259	61 61	10 55	763	< 22	1 50	2,14,3	< 0	- 2
362	42	- 36	783	+4 23	22	113	126	-119
372	66	74	793	70	69	123	86	85
382	44	37	_			133	76	79
392	91	85	<u>6</u> 13	23	22	<u>1</u> 43	42	27
3,10,2	< 18	- 4	623	59	45	153	125	147
3,11,2	29	-11	633	60	56	163	< 13	- 1

312

.

			Т	able 5 (cont	e.)			
hkl 173	$ F_o $ 66	<i>F</i> _c 62	hkl 473	$ F_o $ < 23	F _c -15	hkl $\overline{4}04$	$ F_o $ 185	F_c -220
183	20	-17	483	< 20	13	$\frac{1}{4}$	91	95
193 1,10,3	120	-140 189	493	35 38	-37 43	$\frac{424}{\overline{4}34}$	< 13 < 13	-11 - 4
1,11,3	67	48	519	99	0.9	<u>4</u> 44	18	-24
$\frac{1}{1},13,3$	< 9	3	523	33 27	-13^{23}		$< 13 \\ 25$	-27
1,14,3	27	14	533	$< 18_{62}$	-21	474 784	62 20	-70
013	62	87	553	73	93	494	20 39	35
$\begin{array}{c} 023 \\ 033 \end{array}$	64 79	$-66 \\ 95$	563	78 49	-100 -58	$\frac{4}{4},10,4$	47 40	-43 29
043	102	98	583	< 15	- 6	$\hat{\bar{4}}, \hat{12}, \hat{4}$	< 9	- 4
063	33	137	593	< 13	0	304	52	55
073 083	$\frac{23}{78}$	24 75	613	37	6	$\frac{\bar{3}14}{294}$	49	43
093	135	-137	633	< 20 < 15	14 17	$\frac{324}{\overline{3}34}$	35 117	-131
0,10,3 0.11.3	$\begin{array}{c} 85\\ 122 \end{array}$	71 106	643 653	18	-16	$\overline{3}44$ $\overline{2}54$	59 50	59 52
0,12,3	42	35	663	< 13	-15^{25}	$\frac{354}{\overline{3}64}$	43	40
0,13,3 0,14,3	37 37	29 3 2	904	< 13	19	374 $\overline{3}84$	$< 13 \\ < 13$	8 4
119	91	07	<u>9</u> 14	23	5	394	23	-20
113	105	97 107	<u>924</u> 934	< 13 < 9	-1 14	$\frac{3}{3},10,4$ 3,11,4	46 13	-38 - 20
133 143	109 154	-121 178	804	- 18	91	$\frac{\overline{3}}{2}, 12, 4$	9 75	-5
153	40	29	814	< 13 < 18	- 7	3,13,4	10	-11
$\frac{163}{173}$	102 32	-96 - 17	824 834	65 < 15	-62 13	$\overline{204}$ $\overline{214}$	$62 \\ 76$	-41 - 68
183	30	-21	844	23	4		92	116
1,10,3	< 18 29	-17 17	854	30	22	$\begin{array}{c} 234\\ \overline{2}44\end{array}$	$\frac{36}{64}$	39 65
1,11,3 1 12 3	$< 23 \\ 51$	16 14	704	67 52	63	$\overline{2}54$	80 52	76 46
1,13,3	35	-30^{14}	724	$< 13^{12}$	-12	204	35 35	-31
213	40	-38	734	66 40	$-69 \\ -38$	$\frac{284}{294}$	56 70	$-43 \\ 60$
$\begin{array}{c} 223 \\ 233 \end{array}$	72	-79	754	< 13	5	$\frac{\overline{2}}{2},10,4$	< 13	6
$\frac{233}{243}$	< 13 < 15	13	774	< 9	34 4	$\frac{2,11,4}{2,12,4}$	$< 13 \\ 49$	38
$\begin{array}{c} 253 \\ 263 \end{array}$	55 55	-45 - 63	784	15 < 9	-16	2,13,4	22	30
273	30	7	701		v	<u>1</u> 04	445	-563
$\frac{283}{293}$	$48 \\ 45$	54 -50	$\overline{604}$ $\overline{6}14$	$\frac{46}{23}$	-38 - 22	$\begin{array}{c} 114\\ \overline{1}24\end{array}$	78 56	$\begin{array}{c} 63 \\ 24 \end{array}$
2,10,3	83	75	$\overline{6}24$	36	-25	$\overline{134}$	37	- 35
2,11,3	< 20 23	-27^{4}		107	-37 126	$\frac{144}{154}$	59 31	-29
2,13,3	20	8	654 664	83 76	89 85	$\overline{1}64$ $\overline{1}74$	23	16
313	67	86	<u>6</u> 74	18	→ 25	184	38	10 20
323 333	$< 20 \\ < 20$	$-13 \\ 33$	684 694	9, 13	9 -15	194 1.10.4	32 134	32 - 106
$343 \\ 252$	56 66	-51	$\overline{\underline{6}},10,4$	15	-15	<u> </u>	48	38
363	< 20	1	0,11,4	13		$\frac{1}{1},12,4$ 1,13,4	$< 9 \\ 20$	-10 - 15
$\frac{373}{383}$	$< 22 \\ < 20$	-7	504	48 45	-29	004	56	40
393	36	-33	524	27	21	014	182	218
3,10,3	$< 18 \\ 62$	$-3 \\ 73$	$\begin{array}{c} 534\\ \overline{5}44\end{array}$	$\frac{20}{51}$	$-10 \\ 51$	024	$\frac{102}{73}$	110 60
3,12,3	35	28	554	58	54	044	41	-39
413	65	82	<u>574</u>	< 13	-88 - 9	054 064	65 80	-58 - 76
$\begin{array}{c} 423 \\ 433 \end{array}$	$< 25 \\ 51$	27 55	584 504	40 56	-42 67	074	38	-49
443	91	113	5,10,4	9	9	094	22 96	-91
453 463	108 56	158 56	5,11,4 5,12.4	9 22	$\begin{array}{c} 23 \\ 27 \end{array}$	0,10,4	52	42 12

			Ta	ble 5 (cont.)			
hkl	$ F_o $	Fc	hkl	$ F_o $	Fc	hkl	$ F_o $	Fc
0,12,4	15	24	715	31	-29	<u>1</u> 15	82	90
0,13,4	< 13	-14	$\overline{7}25$	45	45	$\overline{125}$	< 13	5
	••	10	$\frac{735}{7}$	$< \frac{18}{27}$	-2_{15}	135	27	- 9
104	< 18	18	745	27	-15	140	29	- 0
114	38 49		765	< 15 60	53	$\frac{100}{165}$	18	-11
134	38	28	775	40	-44	175	< 13	- 8
144	< 15	26	$\overline{7}85$	< 9	- 2	$\overline{1}85$	63	-24
154	59	-57	795	23	-32	195	< 13	- 3
164	57	80	615	99	45	1,10,5	181	153
174	< 25	16	010 695	33 - 13		1,11,5 1,12,5	< 9	1
194	20	47	635	50	-55	-//0		
1,10,4	< 22	16	$\overline{6}45$	75	77	015	36	-58
1,11,4	< 20	13	655	112	115	025	39	46
1,12,4	< 13	-16	665 777	< 13	· - 16	035	38	-61
904	115	1'59	675 685	51 99	-51	045	00 54	55
204	22	-15	695	30	-31	065	46	-35
224	 44	36	6,10,5	< 6	2	075	29	12
234	< 20	5	, ,			085	48	-54
244	57	-65	$\overline{5}15$	51	67	095	58	31
254	< 20	1	525	76	78	0,10,5	40	33
264	< 23	-24	535	22	- 1	0,11,5	37	34
274 984	29 ~ 93	40 5	540 555	63	89 59	0,12,5	15	10
294	$< 23 \\ < 22$	34	565	59	-58	115	22	20
2,10,4	< 15	-23	575	< 13	1	125	32	47
2,11,4	< 13	2	$\overline{5}85$	39	-47	135	44	46
2,12,4	18	22	595	< 13	4	145	39	-40
804	40	0.0	$\frac{5}{5},10,5$	< 9		155	68 - 99	- 65
304 214	48	00	5,11,5	30	41	105	$< \frac{22}{22}$	32
324	< 20	4	415	< 13	0	185	$< 20^{-2}$	0
334	46	66	$\frac{110}{425}$	< 13	$\check{5}$	195	18	-23
344	23	15	$\overline{4}35$	< 13	-13	1,10,5	< 15	- 7
354	47	-51	$\overline{4}\overline{4}5$	32	-28	1,11,5	< 13	12
364	20	-20	455	23	2	015	05	96
374	< 18	-30	465	31	44	215	~ 25	30 29
304 394	< 18	-29 -66	475	< 13	-13	225	$< \frac{20}{20}$	25
3.10.4	20	-28	400 495	< 13	- 7	245	30	- 1
, ,			$\bar{4},10,5$	74	80	255	33	20
404	< 22	50	$\bar{4},11,5$	13		265	< 20	2
414	47	1	4,12,5	< 6	0	275	< 18	27
424	< 25	28 19	215	93		285	22	- 30
444	< 10	5	$\frac{315}{325}$	$< 13^{23}$	-11	2.10.5	48	51
454	74	-94	335	69	-89	_//-		
			$\overline{3}45$	68	-62	315	22	-42
504	50	48	355	48	20	325	15	3
514	33	35	365	22 50	14	330	$< 15 \\ 80$	-19
534	< 20 46	- 0 73	385	< 13	- 04 - 9	355	< 18	14
544	42	-62	395	< 13	3	365	29	-41
554	< 15	10	3,10,5	< 13	7	375	15	23
			$\bar{3},11,5$	< 9	5	385	< 13	4
604	22	20	3,12,5	15	-21	395	< 9	3
614	23	-36			10			0.0
624	18	43	215	20	-12	415	23	36
015	~ 0	7	220	87 - 13	88 30	420	< 20	-10
$\frac{915}{925}$	< 13	- 1	$\frac{235}{245}$	61	52	445	< 13	-6
		Ŭ	$\overline{2}55$	107	125	455	80	
815	< 9	18	$\overline{2}65$	42	-43			
$\overline{8}25$	40	-34	$\overline{2}75$	29	38	515	13	- 4
835	15	23	285	63	-73	525	< 13	- 9
845 5==	18	9 11	295	88	- 65	30 <i>8</i>	Q	_19
800 865	< 9 < 9	<u> </u>	$\frac{2,10,5}{2,11,5}$	< 13 30	19	816	38	-32
000		-	$ \frac{1}{2}, 12, 5$	22	-26	826	27	21

,

				Table 5 (con	ıt.)			
<i>hkl</i> <u>8</u> 36 846 856	$ F_o < 9 \\ 18 \\ 18$	F_c -4 4 -19	$\begin{array}{c c} hkl\\ \overline{2}86\\ \overline{2}96\\ \overline{2},10,6 \end{array}$	<i>F</i> ₀ 53 20 25	F_c 34 -11 -29	<i>hkl</i> 757 767	$ F_{o} \ {36 \atop 52}$	F _c 27 -54
706 716 726 736 746 756 766 776	$58 < 13 < 13 < 13 \\ 41 \\ 73 < 9 \\ 9 \\ 6$	$ \begin{array}{r} -51 \\ 0 \\ -2 \\ 38 \\ 85 \\ 5 \\ 30 \\ -10 \\ \end{array} $	$\begin{array}{c} 2,11,6\\ \hline 106\\ \hline 116\\ \hline 126\\ \hline 136\\ \hline 146\\ \hline 156\\ \hline 166\\ \end{array}$	$egin{array}{c} 38 \ 185 \ 110 \ 33 \ 20 \ 49 \ < 13 \ 30 \end{array}$	$27 \\ 203 \\ 97 \\ - 2 \\ 11 \\ - 29 \\ - 7 \\ - 20$	$\begin{array}{c} \overline{6}17\\ \overline{6}27\\ \overline{6}37\\ \overline{6}47\\ \overline{6}57\\ \overline{6}57\\ \overline{6}67\\ \overline{6}77\\ \overline{6}87\\ \end{array}$	23 < 13 < 13 < 13 < 82 37 49 33 13	$53 \\ 18 \\ 11 \\ 78 \\ -24 \\ -39 \\ 31 \\ -14$
$\begin{array}{c} \overline{606}\\ \overline{6}06\\ \overline{6}16\\ \overline{6}26\\ \overline{6}36\\ \overline{6}46\\ \overline{6}56\\ \overline{6}66\\ \overline{6}66\\ \overline{6}76\end{array}$	< 6 < 13 < 13 < 13 < 56 23 45 81 < 13 < 13	$ \begin{array}{r} 16 \\ 3 \\ 9 \\ 10 \\ 50 \\ -16 \\ -36 \\ -87 \\ -2 \end{array} $	$\begin{bmatrix} \bar{1}76 \\ \bar{1}86 \\ \bar{1}96 \\ \bar{1},10,6 \\ \bar{1},11,6 \\ 006 \\ 016 \\ 026 \\ 036 \\ \end{bmatrix}$	$< 13 \\ < 13 \\ 59 \\ 71 \\ < 9 \\ 47 \\ 36 \\ 22 \\ 46$	$ \begin{array}{r} -12 \\ 3 \\ -55 \\ 60 \\ -9 \\ 41 \\ -29 \\ -15 \\ -43 \end{array} $	517 527 537 547 557 567 567 577 587 597	< 13 35 < 13 18 40 < 13 < 9 18 13	$ \begin{array}{r} - & 7 \\ - & 37 \\ - & 11 \\ - & 13 \\ - & 30 \\ & 15 \\ - & 11 \\ & 30 \\ & 11 \end{array} $
$ \begin{array}{r} \overline{506} \\ \overline{696} \\ \overline{516} \\ \overline{516} \\ \overline{526} \\ \overline{536} \\ \overline{546} \\ \overline{556} \\ \overline{556} \\ \end{array} $	< 9 18 < 13 55 25 < 13 < 13 48	$ \begin{array}{r} -3 \\ 25 \\ -34 \\ 48 \\ -30 \\ 6 \\ -6 \\ -45 \end{array} $	046 056 066 076 086 096 0,10,6	$30 < 15 \\ 33 < 15 < 13 \\ 35 \\ 15 < 25$	$ \begin{array}{c} 1 \\ 7 \\ 48 \\ 29 \\ 13 \\ 54 \\ -1 \\ -32 \end{array} $	$\begin{array}{c} \overline{4}17\\ \overline{4}27\\ \overline{4}37\\ \overline{4}47\\ \overline{4}57\\ \overline{4}67\\ \overline{4}67\\ \overline{4}67\\ \overline{4}87\\ \overline{4}87\\ \overline{4}97\end{array}$	$< 13 \\< 13 \\23 \\20 \\30 \\23 \\< 9 \\9 \\22$	$ \begin{array}{r} - 8 \\ - 7 \\ - 27 \\ 15 \\ 7 \\ - 33 \\ - 20 \\ - 2 \\ 19 \end{array} $
$ \begin{array}{r} 500 \\ \overline{5}76 \\ \overline{5}86 \\ \overline{596} \\ \overline{5},10,6 \\ \overline{4}16 \\ \overline{4}16 \\ \overline{4}26 \\ \overline{4}36 \\ \overline{4}36 \end{array} $	$< 13 \\ < 13 \\ 40 \\ 27 \\ 6 \\ 99 \\ 22 \\ 38 \\ < 20$	$ \begin{array}{r}1\\-8\\35\\-35\\-11\\117\\20\\-8\\-29\end{array} $	116 126 136 146 156 166 176 186 196 196 1	$36 \\ < 22 \\ 23 \\ 25 \\ 25 \\ < 20 \\ < 18 \\ < 15 \\ < 13$	$ \begin{array}{r} 37 \\ -13 \\ -18 \\ -44 \\ 29 \\ -20 \\ 1 \\ -4 \\ -10 \\ \end{array} $	$\begin{array}{c} \overline{3}17\\ \overline{3}27\\ \overline{3}37\\ \overline{3}47\\ \overline{3}57\\ \overline{3}67\\ \overline{3}67\\ \overline{3}77\\ \overline{3}87\\ \overline{3}87\\ \overline{3}97\end{array}$	$\begin{array}{c} 23 \\ < 13 \\ 51 \\ < 15 \\ 27 \\ < 13 \\ < 9 \\ < 9 \end{array}$	$21 \\ 10 \\ 19 \\ 42 \\ 24 \\ -30 \\ 25 \\ -16 \\ 9$
$ \begin{array}{r} $	$\begin{array}{c} 40 \\ < 13 \\ 15 \\ < 13 \\ - 9 \\ 37 \\ 15 \\ < 13 \\ < 9 \\ 37 \\ 15 \\ < 13 \end{array}$	$ \begin{array}{r} 44 \\ 5 \\ - 1 \\ 21 \\ 7 \\ 3 \\ 38 \\ - 14 \\ - 9 \end{array} $	$\begin{array}{c} 206 \\ 216 \\ 226 \\ 236 \\ 246 \\ 256 \\ 266 \\ 276 \\ 286 \end{array}$	$\begin{array}{c} 33\\ 43\\ < 15\\ < 27\\ < 15\\ < 15\\ < 15\\ < 13\\ 15 \end{array}$	$ \begin{array}{r} 33 \\ 47 \\ - 7 \\ - 2 \\ - 3 \\ -10 \\ 15 \\ - 25 \\ -10 \end{array} $	217 227 237 247 257 267 277 287 297	$\begin{array}{c} 40\\ 33\\ 13\\ < 13\\ 42\\ < 13\\ 18\\ < 9\\ 64 \end{array}$	$\begin{array}{r} 42\\ -27\\ -18\\ 2\\ -50\\ 7\\ -26\\ 12\\ 60\end{array}$
$ \begin{array}{r} \overline{316} \\ \overline{326} \\ \overline{336} \\ \overline{346} \\ \overline{356} \\ \overline{366} \\ \overline{376} \\ \overline{386} \\ \overline{396} \\ \overline{3}96 \\ \overline{3}, 10, 6 \\ \overline{3}, 11, 6 \end{array} $	$< 13 \\< 13 \\49 \\37 \\22 \\35 \\20 \\< 13 \\39 \\25 \\9$	$ \begin{array}{r} 17 \\ -7 \\ 56 \\ 26 \\ -8 \\ -33 \\ -15 \\ 0 \\ 29 \\ -19 \\ 19 \\ \end{array} $	$\begin{array}{c} 306\\ 316\\ 326\\ 336\\ 346\\ 356\\ 366\\ 406\\ 416\\ 426\\ \end{array}$	$ \begin{array}{c} 29 \\ < 13 \\ < 22 \\ 35 \\ < 9 \\ 29 \\ 13 \\ 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 9 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < 0 \\ < $	$ \begin{array}{r} 65 \\ -16 \\ 22 \\ -32 \\ -36 \\ -3 \\ 32 \\ -3 \\ -3 \\ -3 \\ -3 \\ 32 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3$	$\begin{array}{c} \overline{1}17\\ \overline{1}27\\ \overline{1}37\\ \overline{1}47\\ \overline{1}57\\ \overline{1}67\\ \overline{1}77\\ \overline{1}87\\ \overline{1}97\\ \end{array}$	$27 \\ 18 \\ < 13 \\ 25 \\ < 13 \\ < 13 \\ < 9 \\ < 9 \\ < 9 \\ 56$	$ \begin{array}{r} -40 \\ -10 \\ 16 \\ 16 \\ -16 \\ 7 \\ -2 \\ -4 \\ 39 \end{array} $
	$58 \\ 112 \\ 22 \\ 22 \\ < 15 \\ 46 \\ < 13 \\ < 13$	$ \begin{array}{c} -76 \\ 94 \\ -45 \\ -31 \\ -20 \\ -43 \\ -10 \\ 6 \end{array} $	$\overline{817}$ $\overline{827}$ $\overline{837}$ $\overline{717}$ $\overline{727}$ $\overline{737}$ $\overline{747}$	15 27 < 6 18 13 36 22	$ \begin{array}{c} -21 \\ 12 \\ -13 \\ 12 \\ -22 \\ -28 \\ 4 \\ \end{array} $	017 027 037 047 057 067 077 087	$egin{array}{cccc} 15 & & & 15 \ & 20 & & & 43 \ < & 13 & & & 38 \ < & 13 & & & 38 \ < & 13 & & & & & 6 \ \end{array}$	$\begin{array}{r} 25 \\ -22 \\ 28 \\ -43 \\ -9 \\ 29 \\ -7 \\ -1 \end{array}$

.

			Г	able 5 (cont	.)			
hkl	$ F_{o} $	F_{c}	hkl	$ F_o $	F_{c}	hkl	$ F_o $	Fc
117	- 15	6	558	< 9	7	128	< 13	
197	$< 10 \\ < 15$	22	568	< 6	9	138	15	-17
127	< 15	- 3	578	< 4	16	148	18	16
147	22	- 1		• -		158	< 9	9
157	23	30	408	< 18	-23	168	18	17
167	$< 13^{-3}$	17	418	31	-13			
177	< 9	- 5	428	< 22	— .3	008	< 13	-11
		•	438	29	28	018	< 13	7
217	< 13	-21	448	25		028	< 13	-17
227	< 9	-12	458	22	10	038	< 9	10
237	< 9	-12				048	15	- 2
247	18	7	308	20	13	058	13	13
257	15	-25	318	15	θ			
			$\overline{3}28$	< 13		108	23	32
708	22	18	338	< 13	-18	118	< 9	- 8
718	15	10	348	27	-26	128	13	-10
728	22	13	358	< 9	-16			
738	13	10	368	< 9	5	519	15	- 7
			378	23	18	529	< 13	6
6 08	6	- 3				539	< 6	5
618	< 9	3	$\overline{2}08$	71	88	_		
$\overline{6}28$	< 9	- 7	218	32		<u>4</u> 19	< 13	8
$\overline{6}38$	27	-18	$\overline{2}28$	30	- 6	<u>4</u> 29	< 13	- 3
$\overline{6}48$	29		$\overline{2}38$	< 13	13	439	15	20
$\overline{6}58$	9	-14	248	18	3	-	_	_
			$\overline{2}58$	< 9	12	<u>3</u> 19	< 6	0
$\overline{5}08$	41	49	$\overline{2}68$	< 13	8	329	15	-14
$\overline{5}18$	33	-22	$\overline{2}78$	< 6	4	339	13	- 1
$\overline{5}28$	< 9	9				_		
$\overline{5}38$	22	6	108	< 13	-18	<u>2</u> 19	20	-29
$\overline{5}48$	20	3	118	67	-56	229	< 6	- 3

Fig. 8. The structure, showing one unit cell and associated molecules.

316

pares observed dimensions of the molecule with calculated bond lengths in the ring (given in parentheses). These values were obtained by converting the bond orders calculated for pyridine by Longuet-Higgins &

Fig. 9. Bond lengths and bond angles in nicotinic acid. Calculated bond lengths in parentheses.

Coulson (1947) to bond lengths using curves given by Coulson (1951) for C-C bonds and by Cox & Jeffrey (1951) for C-N bonds.

The bond C_2-C_6 joining the ring to the carboxyl group is significantly shorter than the C-C single bond in diamond. The fact that the C-O₂ bond is much shorter than C-O₁ indicates that the hydrogen atom is attached to O₁ and not to O₂.

The molecular environment

There is only one active hydrogen atom in the molecule. This links O_1 of molecule M (Fig. 8) to the nitrogen atom of the molecule M' by a bond of length 2.66 Å. No other intermolecular contact is closer than 3.2 Å. As the hydrogen bond angles are 110° at O_1 and 121° at N' there is no distortion from the tetrahedral configuration at O_1 or from the trigonal configuration at N'.

The molecules are linked by the hydrogen bonds in zigzag chains parallel to the b axis, the chains being held together only by van der Waals forces.

Twinning

The most probable explanation of the twinning is that it takes place in such a way that the molecule $_xM'''$ (not shown in Fig. 8) is reflected across (100) and translated in the y direction so as to form hydrogen bonds between its carboxyl group and that of the molecule M. These O-H...O bonds are normally stronger than O-H...N bonds but in this case do not permit such close packing of the molecules.

The authors wish to thank Dr L. H. Lampitt for his continued interest and encouragement in this work and the Directors of J. Lyons & Co. Ltd for permission to publish. The authors are also indebted to Miss A. V. Bell for the preparation of the figures.

References

- Воотн, А. D. (1946). Proc. Roy. Soc. A, 188, 77.
- BROOMHEAD, J. M. (1948). Acta Cryst. 1, 324.
- COULSON, C. A. (1951). Proc. Roy. Soc. A, 207, 91.
- Cox, E. G. & JEFFREY, G. A. (1951). Proc. Roy. Soc. A, 207, 110.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- GOLDSCHMIDT, G. H. & PITT, G. J. (1948). J. Sci. Instrum. 25, 397.
- LONGUET-HIGGINS, H.C. & COULSON, C.A. (1947). Trans. Faraday Soc. 43, 87.
- PARRY, G. S. & PITT, G. J. (1949). Acta Cryst. 2, 145.
- PATTERSON, A. L. (1949). Acta Cryst. 2, 339.
- QURASHI, M. M. (1949). Acta Cryst. 2, 404.
- ROBERTSON, J. M. (1935). Proc. Roy. Soc. A, 150, 106.
- ROBERTSON, J. M. (1948). J. Sci. Instrum. 25, 28.
- SCHOMAKER, V. & PAULING, L. (1939). J. Amer. Chem. Soc. 61, 1769.
- WRIGHT, W. B. & KING, G. S. D. (1950). Acta Cryst. 3, 31.